If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+50x-120=0
a = 20; b = 50; c = -120;
Δ = b2-4ac
Δ = 502-4·20·(-120)
Δ = 12100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12100}=110$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-110}{2*20}=\frac{-160}{40} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+110}{2*20}=\frac{60}{40} =1+1/2 $
| 2x-15+4x-15=18 | | 61+x=18+8x+8 | | 1+9z+4=175-z | | 10+11y+19=99+y | | 10+11y11y+19=99+y | | 6y+159=16+19y | | 20+16z+7=135+z+12 | | 7+20y=577-18y | | 6y+47=15y+20 | | -6x=-56 | | 72=43+g | | x^2-x-2023=0 | | 5x+8=5(1-x) | | z/8+5=-41 | | 3x-2x=15-2x | | 2x-(18+4x)=3-19x+21+17x | | -4(3x-1)+7x=11-5x | | 2y=5y+11 | | 16x+14-8=180 | | 5+2=2+4x+x | | -3x+9=3(x+7 | | 409-233=z | | -6+5w=24 | | -2x^2=-600 | | -2(8x+1)-1=-7(2x-3)-x | | -(3x+8)+6=-(7x-9) | | 9-5x=-3+11x | | 5y+9=9+2 | | 12-6x=-7x-x | | 6v-9=7+4v | | 25x+7=7+3=25x | | 25x+3=7+3=25x |